
Driving Quality Improvement and Reducing Technical Debt with the Definition of
Done

Noopur Davis
Principal, Davis Systems

Pittsburgh, PA
NDavis@DavisSys.com

Abstract—This paper describes our experiences in using the
Scrum concept of Definition of Done to drive quality
improvements and reduce technical debt. We also describe
how the Definition of Done can be a vehicle to implement
standards, use checklists, and introduce compliance measures
in the Agile development process.

Keywords: Definition of Done, Agile Quality, Measuring
Agile Quality, Reducing Technical Debt

I. INTRODUCTION

Do your projects have to meet corporate quality goals?
Does your organization operate in a regulatory environment,
such as FDA regulations? Does your project have non-
functional requirements such as performance, scalability,
security, or safety? Do you want to improve product
quality? Or are you just tired of mounting technical debt?
This experience report describes how we have used the
Definition of Done to address these problems. We faced
these issues with many teams we have coached and
mentored: through trial-and-error, we have developed a
multi-level application of the Definition of Done to address
these issues: story-level, iteration level, and release level.
We will describe what we did, how we did it, and the
qualitative and quantitative results achieved.

II. BACKGROUND

Several studies have shown that on average, a developer
injects one defect for every ten lines of production code
written in a 3GL programming language such as C, C++, and
Java [1] [2]. This is understandable when one thinks of the
fact that lines of code are handcrafted by human beings
(auto-generated code just moves the abstraction level
higher). Most of these defects have to be removed before
the software can be used by end-users. Software engineering
economics have shown that cost of removing these defects
grows the longer they stay in the system [3][4]. When the
software is targeted for life-critical or safety-critical systems,
the necessity of removing these defects becomes not just a
matter of economics, but literally a matter of life-or-death.

As Agile development methods have become more and
more popular [5], the question arises: how do these methods
address early defect removal? Consider Figure 1: it
represents traditional software development. Developers
work for months until the Feature Complete milestone is
reached. Testers start testing somewhere around the Feature
Complete milestone. A mountain of open defects soon

exists, and the organization frantically works for weeks and
weeks to fix the defects (the find-rate vs. the fix-rate chart
becomes the focus of every meeting). Sometime around the
Release Date milestone, the organization holds its breath and
decides to release the software. My friend and mentor Watts
Humphrey used to say “software is not released, it escapes”!.
A whole bunch of defects are “deferred” to later releases,
contributing to the technical debt carried forward.

One promise of Agile development has been in its
iterative and incremental nature: if work is done in small
increments and each increment is of high quality, then we
have already reduced the length of time defects stay in the
system before they are fixed. In other words, just moving
from traditional development (Figure 1) to Agile
development (Figure 2) helps reduce the costs of fixing
defect, because as noted earlier, we know that the shorter the
time between defect injection and removal, the lower the
cost.

But we want more than a reduction in cost due to shifting
defect-removal closer to defect -injection: we want to also
reduce the number of defects injected in the first place. We
want the cumulative area under the curves in Figure 2 to be
less than the area under the curve in Figure 1. In addition,
we want software to conform to its non-functional
requirements (performance, safety, for example), and we
want software development processes to be compliant with
any applicable internal or external standards, such as FDA
compliance.

Figure 1: This is not Agile

Figure 2: The Promise of Agile

In the past few years, as we trained and coached Agile
teams, we often encountered situations where the Agile
teams had to meet stringent quality goals (unit test statement
coverage >= X%, customer support calls reduced by Y%,
deferred defects reduced by X%, etc.), compliance standards
(FDA compliance, corporate compliance such as Blackduck
assured, Common Criteria assured, statically assured, etc.),
non-functional attributes (performance baselines, reliability
requirements, etc..)

Our challenge was: how can we build quality in? And
how can we do it in a manner consistent with Agile
principles of iterative and incremental development, with
multiple opportunities to inspect and adapt? We decided to
take advantage of these opportunities of inspection and
adaption.

III. OPPORTUNITIES TO INSPECT AND ADAPT

In Agile development, there are several events used to
show demonstrable product progress via working, tested
outputs.

 Story completion
 Sprint completion
 Potentially Shippable Increment (PSI) completion

(in Scaled Agile Framework, or SAFe[7])
 Release completion
Each successive event provides additional capabilities,

and opportunities for early feedback. These “inspect and
adapt” opportunities allow early “debugging” of
plans/processes/products. These are also natural boundaries
to inspect and adapt product quality and quality attributes,
and to integrate compliance and governance.

The Definition of Done (DoD) for each of these events
provides a mechanism for doing this.

IV. DEFINITION OF DONE

According to the Scrum Guide [6], the Definition of
Done(DoD) is defined as follows:

When the Product Backlog item or an Increment is
described as “Done”, everyone must understand what
“Done” means. Although this varies significantly per Scrum
Team, members must have a shared understanding of what it
means for work to be complete, to ensure transparency. This

is the “Definition of Done” for the Scrum Team and is used
to assess when work is complete on the product Increment.

The same definition guides the Development Team in
knowing how many Product Backlog items it can select
during a Sprint Planning Meeting. The purpose of each
Sprint is to deliver Increments of potentially releasable
functionality that adhere to the Scrum Team’s current
Definition of “Done.”

Development Teams deliver an Increment of product
functionality every Sprint. This Increment is useable, so a
Product Owner may choose to immediately release it. Each
Increment is additive to all prior Increments and thoroughly
tested, ensuring that all Increments work together.

As Scrum Teams mature, it is expected that their
Definition of “Done” will expand to include more stringent
criteria for higher quality.

Since Scrum is a framework, no operational guidance is
provided on how to implement this. We have taken this
concept and operationalized it for application at multiple-
levels of an Agile project: Story DoD, Sprint DoD, and
Release DoD. In other words, we want to remove any
ambiguity about what it means for a story to be done, a sprint
to be done, or a release to be done: especially any ambiguity
related to quality or compliance.

Figure 3: The Definition of Done Fractal

V. EXAMPLES OF DEFINITION OF DONE

 During Sprint planning, we coach Agile teams to agree
upon a Definition of Done. Here, we present the evolution
of a DoD for a project as it matured through three releases,
each 6-months duration. This team of 5 developers and 3
testers were working on the next release of an existing
product in the enterprise software domain. The previous
release had been so full of bugs that the team had spent two
whole Sprints stabilizing the product before release.
Customers were unhappy with product quality and support
calls were increasing. The company had set strict quality
goals (reduce deferred defects). The product had to conform

to performance baselines (industry benchmarks existed).
And the product had to pass the highest level of security
audits in the organization.

Table 1 shows the initial DoD the team defined during
Sprint 1 planning. Each row represents an activity included
in the DoD, while each column shows what completion
boundry the activity applied to. An “X” at the intersection of
the row and column signifies that the activity in that row
applies to the boundary in that column. For example, an “X”
in row1-column1 means that the team will not consider a
story complete until the code was written according to team
coding standards and unit test code coverage was at least at
25%. Note that the items in the DoD DO NOT imply
Waterfall: they are criteria for fitness, not meant to be done
in any particular order or follow any gates.

The team used this DoD for 6 4-weeks Sprints, and
delivered Release 1.

Table 1: Release 1 Definition of Done

During Sprint retrospectives, the team found that they
had to redo a lot of work because they did not do enough
design (UX design as well as engineering design). They also
found that Acceptance tests were not enough: too many
defects were still being found late and being deferred. So
they added design, design peer review (amazing how many
issues testers found during design walkthroughs and
reviews), acceptance test peer review (developers would
often say, “You didn’t think about that in the tests”, or even
better, “I didn’t think about that in the code) and exploratory
testing to their DoD. Table 2 shows the DoD the team used
at the start of Release 2. As you can see, the DoD became
more rigorous. This is a pattern we often see: as teams
mature, their DoD becomes more rigorous, resulting in
higher and higher code quality.

Table 2: Release 2 Definition of Done

During release 2, the team found that although they had
improved quality a lot, localization testing revealed a lot
defects right before the release, and security audits revealed a
lot of defects as well. The team also found a lot of issues
when the software was run on production systems. So they
incrementally improved DoD during release 3 to address
these issues. Table 3 shows the final DoD after Release 3.

Table 3: Release 3 Definition of Done

Working with my friend and colleague Carl Wyrwa, a
38-year veteran of Medical Device software, we have
developed a DoD based on FDA IEC 62304 and TIR45 for
use my teams we are coaching in the Medical Device
software industry [8]. This DoD is presented in Table 4. As
you can see, this is much more rigorous than any of the
DoDs presented so far.

Table 4: Definition of Done Targeted for FDA IEC 62304 and

TIR45

OPERATIONAL GUIDANCE

Some early struggles we faced resulted from the fact that
teams would agree on a DoD, but then it would become
really difficult to track if the team was really using the DoD.
To mitigate this problem, we decided to operationalize the
use of the multi-level DoD from several points of view.

 Training – we incorporated a DoD exercise during
our two-day Scrum and Agile training class. This
enabled all team members to ask questions and
become socialized to the concept

 Templates – we created templates in Rally and
Version One (tools used most frequently by teams
we coach for

o Story DoD templates (used to populate
tasks for a story)

o Sprint DoD templates (used to create one
story and associated tasks per Sprint)

o Release DoD templates (used to create one
story and associated tasks per Release)

 Measurement – we started collecting core metrics to
monitor the health of the system at Sprint and
Release boundaries.

RESULTS

At the end of each Sprint and at the end of each Release,
we collected some metrics, which are shown in Error!
Reference source not found.. Let me explain each
measure.

 Defects deferred1 – this is a measure of technical
debt for future releases. Any defect deferred in
release X is a technical debt for release X+n. A
DoD that results in fewer deferred defects is one that
demonstrates reduced contribution to future
technical debt. This metric was collected from the
Bugzilla data base the project used to track bugs.

 Defects reopened – this team found that initially, 1 in
5 defects that they “fixed” were kicked back. This is
just waste. A reduction is percentage of defects re-
opened is a measure of elimination of rework or
waste. Note: As the team’s unit test and acceptance
test automation percentage increased, this measure
decreased. However, testing the system the team
was working on could never be fully automated
because of latency and other issues. This metric was
collected from the Bugzilla data base the project
used to track bugs.

 Peer review yield – this measure captures the
percentage of total defects found in peer reviews.
This is an indication of the quality of the Peer
reviews. The team used Code Collaborator from
Smartbear, and this measure was collected from the
tool directly.

 Unit test statement coverage – this measure can be
used to indicate both code quality (as in defect-free

1 We did not normalize the defect counts by code size, because this

organization released on a 6‐month cadence, and the same team worked
on all three releases.

code) and code maintainability (of course,
maintainability is a quality attribute in itself).
Because this team was starting from almost no unit
tests, they agreed that for them, the statement
coverage measure was more about maintainability
than “free-from-defectsness”.

 Customer beta defects – a measure of defects found
by customers during customer betas. A reduction in
this measure shows improved quality from the
customer point of view. This measure was collected
from Bugzilla.

 Finally, we wanted to measure the team’s
satisfaction with the process. At the end of each
release (and at the end of random Sprints), we used a
Net Promoter Score measure to gauge team
satisfaction with their work processes.

Here are the results from the project described earlier as
it matured its DoD through three consecutive releases, with
each DoD becoming more stringent as the team inspected
and adapted. One result that was surprising was how much
the team embraced the DoD concept (as shown by the team
Net Promoter Score): they were so sick and tired of dealing
with poor quality that they were open to trying new things.

Table 5: Results (6-month release cadence)

Based on these results, one can see how this project
 Reduced technical debt – by reducing deferred

defects
 Reduced waste – by reducing percentage of defects

re-opened
 Improve product quality – by reducing customer beta

defects
 Reduced costs – by improving peer review yields
 Improved maintainability – by increasing unit test

statement coverage
Although not measured, you can also see that the project

used the multi-level DoD to
 Help implement non-functional requirements around

performance and security
 Incorporate standards (coding standards) ,

guidelines(static analysis rule-sets), checklists
(review checklists), and metrics (the measures
shown above)

 Bridge gaps with other functions such as localization
and documentation – localization became a Sprint-
level activity instead of a Release-level activity.

Finally, via the FDA-project DoD we can see how the
DoD can be used to comply with regulatory requirements.

One note of caution: there is a danger than teams start
focusing too much on the DoD. The focus of the team

should always be on completing stories, on inspection and
adaptation, on continuous improvement.

CONCLUSION

We have now used this concept of a multi-level
implementation of the Definition of Done with about a dozen
of Agile projects, including three Scaled Agile projects
involving up to a dozen geographically distributed teams
working cooperatively to deliver large projects. The
quantitative results have been very encouraging. Just as
encouraging has been the way teams have embraced this
concept. Although we have been able to empirically show
that this method reduces the number of defects and technical
debt resulting from deferred defects, we do not yet have
enough data to reach solid conclusions about improvements
in non-functional requirements. We will continue to gather
data from more projects, and will publish future changes to
the DoD that result from these analyses.

REFERENCES
[1] Humphrey, W. “A Personal Commitment to Software Quality.”

Pittsburgh, PA: The Software Engineering Institute (SEI)
ftp://ftp.sei.cmu.edu/public/documents/articles/pdf/psp.qual.pdf

[2] Jones, C. and Bonsignour, O. The Economics of Software Quality.
Pearson 2011.

[3] Boehm, B. Software Engineering Economics. Prentice Hall 1981

[4] Rothman, J. “What Does It Cost You To Fix a Defect? And Why
Should You Care?” http://www.jrothman.com/2000/10/what-does-it-
cost-you-to-fix-a-defect-and-why-should-you-care/

[5] Version One State of Agile Survey 2012 -
http://www.versionone.com/state-of-agile-survey-results/

[6] http://www.scrum.org/Scrum-Guides

[7] http://ScaledAgileFramework.com

[8] Davis, Noopur and Wyrwa, Carl “Medical Device Software:
Leveraging Agile and the Team Software Process”, Medical Device
Summit, May 22, 2013
http://medicaldevicesummit.com/Main/Features1/Medical-Device-
Software-Leveraging-Agile-and-the-T-1365.aspx

